New Article on bioRxiv: Simultaneous, cortex-wide and cellular-resolution neuronal population dynamics reveal an unbounded scaling of dimensionality with neuron number

We are happy to announce that a new manuscript entitled “Simultaneous, cortex-wide and cellular-resolution neuronal population dynamics reveal an unbounded scaling of dimensionality with neuron number” has been uploaded to the bioRxiv preprint server.

The brain’s remarkable properties arise from collective activity of millions of neurons.
Widespread application of dimensionality reduction to multi-neuron recordings implies that
neural dynamics can be approximated by low-dimensional “latent” signals reflecting neural
computations. However, what would be the biological utility of such a redundant and
metabolically costly encoding scheme and what is the appropriate resolution and scale of neural
recording to understand brain function? Imaging the activity of one million neurons at cellular
resolution and near-simultaneously across mouse cortex, we demonstrate an unbounded scaling
of dimensionality with neuron number. While half of the neural variance lies within sixteen
behavior-related dimensions, we find this unbounded scaling of dimensionality to correspond to
an ever-increasing number of internal variables without immediate behavioral correlates. The
activity patterns underlying these higher dimensions are fine-grained and cortex-wide,
highlighting that large-scale recording is required to uncover the full neural substrates of internal
and potentially cognitive processes.

Read our full publication here.

Congratulations to the entire team!