Our paper entitled “Video rate volumetric Ca2+ imaging across cortical layers using Seeded Iterative Demixing (SID) microscopy” has been published in Nature Methods.
We present a novel computational technique termed Seeded Iterative Demixing (SID) that allows for capturing neuronal dynamics in vivo within a volume of 900 × 900 × 260 µm, located as deep as 380 µm in the mouse cortex and hippocampus, and at a very high volume rate of 30 Hz. SID is based on Light Field Microscopy (LFM), a 3D imaging technique that our group has established in a previous publication as a versatile neural recording technique for weakly scattering specimen, such as larval zebrafish. SID extends LFM into more strongly scattering tissue such as the mammalian cortex by seeding a machine learning algorithm with remaining unscattered light and then iteratively “demixing” the effects of scattering in order to retrieve the neuronal activity signals from deep inside scattering tissue. The simplicity and scalability of LFM, coupled with the performance of SID opens up a range of new applications and is expected to propel its wide dissemination within the neuroscience community.
Read the publication or a short summary.
Please also have a look at the press release of the Rockefeller University.