Our paper entitled “Fast volumetric calcium imaging across multiple cortical layers using sculpted light” has been published in Nature Methods.
In this work, we present a novel method based on light sculpting that enables unbiased single and dual-plane high-speed (up to 160 Hz) calcium imaging, as well as in vivo volumetric calcium imaging of a mouse cortical column (500x500x500 µm) at single-cell resolution and fast volume rates (3 – 6 Hz). This is achieved by tailoring the point-spread function of our microscope to the structures of interest while maximizing the signal-to-noise ratio while using a home-built fiber laser amplifier with pulses that are synchronized to the imaging voxel speed. Together, these innovations have enabled the near-simultaneous in-vivo recording of calcium dynamics of several thousand active neurons across cortical layers and in the hippocampus of awake behaving mice.
Read the publication or a short summary.
Please also have a look at the press release of the Rockefeller University.